Saturday, December 7, 2019

Some Question on Stepping Motor, Gear Reduction and Microstep Driver

I'm in the planning stages of building myself a CNC machine, like most people I want it to be accurate and reasonably fast without costing a fortune.

I intend to build most of the structural components with mostly T-Slot Aluminium, the X-A-Y axis's will move using a rack & pinion. What I've learned through Google is that, a rack & pinion setup requires geared reduction of some sort and a microstep driver to achieve a balance of smooth operation and increased torque.
Most of the DIY CNC machines I've seen are using some form of belt/pulley system for the gear reduction along with microstepping. I have my reservations with this type of setup for the following reasons:

Some Question on Stepper Motors, Gear Reduction and Microstep Driver

The belt/pulley system in the link above requires additional space, components and adds complexity to the build.
I have a hard time trusting that the belts won't stretch and miss steps.
I'm cautious off backlash, on-going maintenance and their life expectancy.
Using a microstep driver will be smoother, however less accurate.


I've done a little research on this subject and would like some opinions from more knowledgeable people in this area. Rather than use a belt/pulley system, would using a stepper motor with a planetary gearbox be a viable alternative? Below are links to some NEMA 23 motors, each with vastly different ratios.

4:1 Ratio - Gear Ratio 4:1 Planetary Gearbox High Torque Nema 23 Stepper 23HS30-2804S-PG4|23HS30-2804S-PG4|Geared Stepper Motors
47:1 Ratio - Gear Ratio 47:1 Planetary Gearbox High Torque Nema 23 Stepper 23HS30-2804S-PG47|23hs22-2804s-pg15|Geared Stepper Motors
17hs13-0404s-pg5,

Below is an excerpt taken from the belt/pulley page which got me thinking.

The R&P system is based on a pinion with a 1" pitch circle.
The total linear distance traveled per revolution of the pinion is thus 3.14159".
With the 3:1 reduction, this means that the distance traveled per motor revolution is 3.14159 / 3, or 1.0472".
If you have a stepper with 200 steps per revolution, this means you have 200 / 1.0472" = 190.9861 steps per inch, or 0.005236" per step.
With 10x microstepping, you would have 1909.861 steps per inch, or 0.0005236" per step.


I've broken down their calculations step-by-step:

Belt/Pulley System with 10x microstepping:

3.14159 / 3 = 1.0472 (distance traveled per motor revolution)
200 / 1.0472 = 190.9861 (steps per inch)
1.0472 / 200 = 0.005236 (per step)
190.9861 * 10 = 1909.861 (steps per inch with 10x microstepping)
0.005236 / 10 = 0.0005236 (per step with 10x microstepping)

Planetary Gearbox Stepper Motor with 4:1 gear ratio and 10x microstepping:


3.14159 / 4 = 0.7853 (distance traveled per motor revolution)
200 / 0.7853 = 254.6797 (steps per inch)
0.7853 / 200 = 0.003926 (per step)
254.6797 * 10 = 2546.797 (steps per inch with 10x microstepping)
0.003926 / 10 = 0.0003926 (per step with 10x microstepping)

Planetary Gearbox Stepper Motor with 47:1 gear ratio that produces similar steps without a microstepper driver:


3.14159 / 47 = 0.0668 (distance traveled per motor revolution)
200 / 0.0668 = 2994.0119 (steps per inch)
0.0668 / 200 = 0.000334 (per step)

Considering the two motors, the 4:1 gearbox would have to be used with a microstep driver. But would it be possible to use the higher ratio 47:1 gearbox and do without the microstep driver? Or am I missing something?

https://oyostepper12.myblog.it/2019/12/06/sa-valjer-du-ratt-spanning-for-din-stegmotor/
https://izistepperbest.blogg.se/2019/december/hur-man-valjer-ratt-stegmotor-for-jobbet-och-vad-du-behover-veta.html

No comments:

Post a Comment

What are the maintenance tips for servo motors?

1. Basic definition of servo motors Servo motors are the core actuators in servo systems. They accurately adjust the motion state of mechan...