Additional benefits of linear stepping motors
Linear stepping motors are an excellent solution for positioning applications that require rapid acceleration and high-speed moves with low mass payloads. Mechanical simplicity and precise open-loop operation are additional features of the Compumotor microstepping linear motor systems.
High Throughput – The motors are capable of speeds to 100 ips and the low mass forcer allows high acceleration.
• Mechanical Simplicity – The need for leadscrews or belts and pulleys is eliminated. The mechanical design is preengineered.
• High Reliability – Fewer moving parts and a friction-less airbearing design results in a longer, maintenance-free life.
• Long Travel – Length of travel is limited only by the length of the platen; increasing length causes no degradation in performance.
• Precise Open-Loop Operation – Unidirectional repeatability to 2.5 microns without the added expense of feedback devices.
• Small Work Envelope – A linear motor is usually smaller in all three dimensions than comparable systems where rotary motion is converted to linear.
• Easily-Achieved X-Y Motion – The assembly of X-Y gantry systems is readily accomplished.
• Multiple Motion – More than one forcer can operate on the same platen with overlapping trajectories.
Construction of a Linear Step Motor
A linear hybrid stepping motor operates on the same electromagnetic principles as a rotary hybrid stepping motor.The moving element is called a forcer. The stationary part is called the platen. The stator or platen is a passive toothed steel bar extending over the desired length of travel. All permanent magnets, electromagnets and bearings are incorporated into the armature or forcer. The forcer moves bidirectional along the platen, assuring discrete locations in response to the state of the currents in the field windings
https://forum.pjrc.com/members/69291-jingzhano
https://forum.pololu.com/t/stepper-motor-control-problem/18652
Linear stepping motors are an excellent solution for positioning applications that require rapid acceleration and high-speed moves with low mass payloads. Mechanical simplicity and precise open-loop operation are additional features of the Compumotor microstepping linear motor systems.
High Throughput – The motors are capable of speeds to 100 ips and the low mass forcer allows high acceleration.
• Mechanical Simplicity – The need for leadscrews or belts and pulleys is eliminated. The mechanical design is preengineered.
• High Reliability – Fewer moving parts and a friction-less airbearing design results in a longer, maintenance-free life.
• Long Travel – Length of travel is limited only by the length of the platen; increasing length causes no degradation in performance.
• Precise Open-Loop Operation – Unidirectional repeatability to 2.5 microns without the added expense of feedback devices.
• Small Work Envelope – A linear motor is usually smaller in all three dimensions than comparable systems where rotary motion is converted to linear.
• Easily-Achieved X-Y Motion – The assembly of X-Y gantry systems is readily accomplished.
• Multiple Motion – More than one forcer can operate on the same platen with overlapping trajectories.
Construction of a Linear Step Motor
A linear hybrid stepping motor operates on the same electromagnetic principles as a rotary hybrid stepping motor.The moving element is called a forcer. The stationary part is called the platen. The stator or platen is a passive toothed steel bar extending over the desired length of travel. All permanent magnets, electromagnets and bearings are incorporated into the armature or forcer. The forcer moves bidirectional along the platen, assuring discrete locations in response to the state of the currents in the field windings
https://forum.pjrc.com/members/69291-jingzhano
https://forum.pololu.com/t/stepper-motor-control-problem/18652
No comments:
Post a Comment